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CRYProG PIIIC DIGITAL COMMUNICA110N 

INT'RODUCJ10N 

There are JUnY waya of -'ecurdinl the tnnamiuion of eecret information. Cryp
tcJcnphy il employed when unauthoriled penonnel have the technical capability of in
~ and Com~Ctly in~ a .aet BMWJIIP. A crypt~ analoc communi· 
cation Q'ltem, IUCh • the in~ of flequencles to c:JiiCujle a voice menap, usually 
requira n:penliw .ad ~at.ed iMtnamentation. Due to the availability of the dili· 
till computa, cryptocraPhic dilital COIIUDunication aylteml are more readily automated. 

Cry~ dilital CG~U~unication illacco~Dpti~hed in two waya. Codina corllilta 
of the aubltitution of 1J10UP1 of bita of fti'Uible Jenatb for plaintext poupa of variable 
lencth. lndphe.,._.t coMita of the IUbetitution of fixed~ poupa of bita for ftsed
Jenatb pWntat poupa. In ........... codiftl ill too llow for hilh-denlity data tnnllllillion. 
Another ~tale :. the technical clifDculty entailed in the INquent code chaniN nec
aary for leCI'eC)'. FOI' thele ..._..., ~ ayltnal, which provide h~..,eed cap
abiliti~ ~nd are ealily IDOclifted* are ·.ed in mwt prKtical cl)'ptopaphic dilital 
COIIUD..UC.tiona. 

'lbele are two bMic typea of endpherment - the atream cipher and the block 
cipher. The 1t1eam cipher il bit-by-bit eneiphenMnt which ..Wta when a b6nuy aymbol 
ill added, modulo two, to etiCh bit of plaintext. 1he complete ~et. of blnaly tl)'mboh or 
the Nle for aenentinl it ill called the a,. Decipheri111 ill 8CCOiftPiilhed by addina the 
key to the coewotpOIICiiftl endpheNCI bit. The IIIOft nnclom the key, the more dilftcult 
it ilfor a Cl)'pUnalylt to dedpher • intelalpted cryptocnun. AJcorithiDI eDt for pn
eratiftllOIII ~onndom keya floiB two or.,..., lhort atream• of dilita. Howewr, an 
lllloftthm imphes a dl!!lree of ftiiUiarity, enhance~ the pouablity that an unauth-
Oibed CJYptanalyat may dilcem the pattena and duplicate the by pnerator. 

A block cipher il dellned • the conwnion of"' plain bita simult.eoully into n 
enciphered bita. kh of the enciphered bita il a function of all of the plain bita. For 
\IIWDbiluoul dedpherinc. it il MCF nry that"~ 111. For ..-e· of automation, it il pref
erable that " • •· Since lmowledle of the conwnion of one block of bita reveals little 
or notllinl about the conv..-... of another block, the block cipher can be made eecure 
by eaaployq laqe ..au. of 11. A prKtical difftculty ill the laqe number of wirel re
quired in the implementation ofiUCh a cipher. One IDiaht try to circumvent thil problem 
by employqa block cipher which..-, tran1po111 the plain bita. However, the lim· 
plicity of form of IUCh an endpherinlay..._ ..._it vulnerable. 
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DON J. TORRIERI 

Many automatic electronic cryptographic systems use a stream cipher which incor- 
porates some of the useful aspects of the block cipher.  The technique is to use a pseudo- 
random key which is a function of the plaintext itself.  Thus each enciphered bit is a 
function of many preceding plain bits.   A drawback of this system, which we shall call a 
data-keyed cipher, is that a single erroneous bit entering the deciphering system causes 
many additional bit errors down the line.   In stream ciphers with data-independent keys, 
a single error is confined to a single position; in a block cipher, each error may affect any 
of the other bits of the block. 

To consolidate the understanding of the definitions, they shall be put in a more 
mathematical form.  A block cipher is defined to be a rule for associating with each 
block (*,, JCI+1, ... , x(+n) of plaintext, a block (y„ yl+1, ... , >,+„) of cipher text. 
Thus we can write 

yk  = fkixi' *i-U. - . *(+n).    '<*<' + ". 

where the fa are functions.   A stream cipher is defined to be a rule for associating 
with each stream {xl, X2, ... , *,, xi+1, ...) of plaintext, a stream(yj, y2, ..., y,, y,+ i, ...) of 
cipher text, subject to the restriction 

y     ,4(«A-fi+i.**-«+2' •• • **)« * > "; 

Vfe(*i, x2, ... , xk), k <n. 

In addition, yfc is often a function of certain initial conditions in the enciphering and de- 
ciphering systems. 

Most modem cryptographic systems fit into these two broad categories or represent 
a hybrid of these two ciphers. For example, the Vemam or one-time system is a stream 
cipher with a data-independent key; thus, yfc = /^(J*). 

A special case which aids in the intuitive understanding of the preceding ideas is the 
linear data-keyed cipher.   Figure 1 shows an implementation of a linear data-keyed cipher 
in which a four-stage shift register of type D flip-flops and exclusive OR gates are used. 
For each distinct setting of the switches, there is a different enciphered output stream. 
The corresponding deciphering system is shown in Fig. 2.  The extra flip-flop is included 
for synchronization purposes.   The switches must be set in the same manner as those of 
the enciphering system.   A proof of this statement shall now be given. 

We define p(0 as the input sequence of plain bits into the enciphering system and 
c{t) as the corresponding output.  Similarly, c1{t) is the input sequence of enciphered 
bits into the deciphering system, and P](0 is the corresponding output.  We define the 
operation "+" as modulo-two addition.   The multiplication is defined as usual. 

The operation D is defined by Dp{t)=p{t - tQ), where t0 is defined such that t - t0 

is the time of the clock pulse immediately preceding the time t. 
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Fig. 1 — Linear data-keyed enciphering system 

CRYPTOGRAM 

CLOCK 

•-PLAINTEXT 

Fig. 2 — Linear data-keyed deciphering system 

The discrete variables s, may take the values 0 or 1, depending on whether the cor- 
responding switch in the enciphering system is open or closed, respectively.  The discrete 
variables sj refer to the deciphering system and are defined analogously.  With the pre- 
ceding definitions and the system of Fig. 1, we observe that during steady-state operation, 

c{t)=Dp(t) + s4Dc{t) + s3D2c(t) + s2Dac{t) + s]D
4c(0. (1) 

Looking at Fig. 2, we can write 

PjCO = DcjCO + 8'4D
2Ci(t) + «gZ^CjCO + s2D4Ci(0 + s;i>5ci(0. (2) 

In modulo-two arithmetic, o + ft = c implies a = 6 + c.    Using this simple fact, Eq. 
(1) yields 

Dp(t) = c(0 + s4Dc(t) + saD2c{t) + s2D3c(0 + s^cit). (3) 
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We observe that Cj(0 = c{t - r), where T is the delay due to transmission.   Suppose «• 
= s, for i = 1, 2, 3, 4.   A comparison of Eqs. (2) and (3) then indicates that 

P^t) = D^pit - T). (4) 

Thus the output of the deciphering system is a delayed version of the input to the en- 
ciphering system.  The proof for the general system of n shift-register stages is analogous. 

In the absence of an input, the system of Fig. 1 behaves as a pseudorandom word 
generator.  The maximum length of the output sequence before pattern repetition is 2" 
- 1 bits, where n is the total number of functioning shift-register stages.  The maximum- 
length sequence will occur only for certain switch settings and only if the initial flip-flop 
states are not all zero.   For example, in Fig. 1, switch SI must be closed if a pseudo- 
random sequence of length 15 is to be generated.  If SI is open, the maximum possible 
length is 7.  If n * 20, a pseudorandom sequence of over a million bits in length may be 
generated.  It would seem that enciphered bits produced by such a system would be un- 
decipherable with less than 2" - 1 intercepted bits; cryptanalysis would be hopeless if 
n > 20.  However, we shall show that the key can be broken with as few as 2n bits. 

Consider the discrete times f,, where fJ+1 = f, + T, and T is the clock (bit) period. 
In the general case, we have the following steady-state relations analogous to Eq. (3): 

Dpiti) - <?(*,) + snZ}c(f() + ...+ glD"c(«i), 

i = 1, 2, ... , n. (5) 

Since Z)c(^+j) = c(tj), the n equations represented above contain the n unknown values 
of 8j and 2n values of c{t).  It follows that it is possible, under the appropriate conditons 
and with knowledge of the 2n values of c(t) and the n values of Dpiti), to solve the sys- 
tem of equations for the s,-. 

As an example, consider the case where n = 4. Suppose we acquire the following 
sequences of plaintext and enciphered bits: 

c(f,):    10 0 10 0 111 

DpVi):   10 10 10 10 1 

The first four values of Dpitj) do not help us, since we cannot construct all the terms on 
the right side of Eq. (5).   As a matter of fact, Eq. (5) may not be valid for the first four 
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values of Dpitj) since we have not been told whether the steady state has been reached 
If the clock of the enciphering system has just started at <j,then the four values are de- 
pendent on the initial states of the flip-flops.   From the second set of n = 4 observations, 
Eq. (5) yields 

1 = «4 + «i • (6) 

0 = 83, (7) 

1-1+ s2. (8) 

and 

0= 1 +s4 +s1, (9) 

which imply that »2 " s3 ~ 0> but do not tell us uniquely the values of s1 and «4.   If we 
use the final observation, we obtain 

1 = 1 +s4 +83, (10) 

which now allows us to assert that s4 = 0 and sl = 1.  Note that n + 1 = 5 known plain 
bits and 2n + 1 = 9 enciphered bits were used.   However, if we had originally used Eqs. 
(7) — (10) instead of Eqs. (6) — (9), we could have obtained the solution with n = 4 
known plain bits and 2« = 8 enciphered bits.  Once the switch settings have been deter- 
mined, it is easy to solve for the initial states. 

If the switch 51 is open, the first flip-flop is nonfunctional, and we have an encipher- 
ing system with only three shift-register stages.  However, the cryptanalyst usually does 
not know a priori the number of shift-register stages.  Consequently, he must allow for the 
largest number of stages possible while attempting to break the key. 

liiere are certain bizarre circumstances under which the key cannot be broken, 
despite an indefinitely long, known set of plain and enciphered bits.  For example, sup- 
pose we have the periodic patterns 

c(fl):   00110011... 0011 

and 

Dpitf):   00000000... 000 0. 

It is readily verified that there are two possible solutions, no matter how many of these 
patterns are observed. 
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Since it readily can be cracked under certain circumstances, the linear data-keyed 
cipher is not a very practical system for high-security purposes.   It can be reasonably ef- 
fective for infrequent, low-security operations if the number of stages is large and if the 
user is careful not to use plaintexts of many consecutive zeros or ones, too systematic a 
formatting of frames, or indications of where words start and end.   For high-security pur- 
poses, nonlinear systems based on operations other than modulo-two arithmetic can be 
designed to make code breaking extremely complicated and expensive.  A block diagram 
of a general data-keyed enciphering or deciphering system is shown in Fig. 3. 

INPUT SHIFT 
REGISTER 

JL      ^f        KEV BITS 

COMBINER 

*- OUTPUT 

Fig. 3 — General data-keyed enciphering or 
deciphering system 

In any digital communication system, the transmitted bits and words have certain 
error rates.  Except for stream ciphers with data-independent keys, encipherment causes 
these error rates to increase if other system parameters remain unchanged.   In block ci- 
phers, each deciphered bit is a function of all the transmitted enciphered bits in the cor- 
responding block.  Therefore a single erroneous received bit is practically certain to cause 
many erroneous deciphered bits.  For the data-keyed system of Fig. 3, the degradation is 
due to the presence of the shift register.   A received bit error due to random noise is car- 
ried through the shift register, causing additional bit errors down the line.  We shall obtain 
quantitative measures of the degradation for general stream and block ciphers. 

It can be verified easily that the roles of Figs. 1 and 2 can be interchanged; that is, 
the system of Fig. 2 could serve as an enciphering system with the system of Fig. 1 as the 
corresponding deciphering system.  However, this choice is not a good one for a practical 
communication network, since a single bit error at the input of Fig. 1 will cause an in- 
definite number of further errors at the output.  In the original configuration, only four 
output bits at most are affected by a single input bit error at the deciphering system. 

ERROR-RATE BOUNDS FOR STREAM CIPHERS 

We shall desigrate by Pb the probability of bit error for an unenciphered communi- 
cation system.  We shall assume that the bit errors resulting from transmission occur in- 
dependently of each other.  It follows that the word error rate is 

/>    » 1 -(1 -Pb)
h (H) 
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where k denotes the number of bits per word.  We now investigate what happens when 
a stream cipher is added to the communication system. 

Suppose an enciphered bit is erroneously received as a result of random noise or 
other interference.   As the erroneous bit proceeds through the deciphering system, each 
of n consecutive output bits will be affected.   We define a train to be this set of n con- 
secutive bits emerging from the deciphering system.   For a stream cipher with a data- 
independent key, n = 1.   For a data-keyed cipher, n > 1. 

The k bits of an enciphered word entering the deciphering system shall be referred 
to as the input word.  The corresponding k plain bits emerging from the deciphering sys- 
tem shall be designated the output word.   The probability of a word error, Pcw, is defined 
to be the probability of one or more erroneous bits in the output word.  We shall say that 
a train is of external origin with respect to an output word if the first bit of the train 
occurs before the first bit of the word.   The joint probability of a word error and a train 
of external origin extending into the word is denoted by P{w, t).  If no train of external 
origin extends into the word, the conditional probability of word error is denoted by 
P(u)\t).   The probability that a train of external origin does not extend into a word is de- 
noted by P(7).   With these definitions and notation, we now derive a decomposition which 
will be useful in our analysis of stream-cipher error rates. 

From the theorem of total probability, 

Pcw = P(w, t) + P(w\J)P{-i). (12) 

A train wll extend into an output word if, and only if, one of the n - 1 input bits 
immediate.y preceding the corresponding input word is in error due to random noise. 
Thus, assuming bit errors are independent, 

PV) = (1 ~ Pb)n-K (13) 

When no train is present, an error in one of the bits of the input word causes an error in 
the corresponding bit of the output word.   Thus P{w\t) is the same as the probability of 
a word error fur plaintext; that is, 

Piwlt) = 1 - (1 - Pb)
k. (14) 

To determine P{w, t), additional notation must be introduced.  If i bits of a train of 
external origin extend into a word, we denote this condition by the symbols tb = i.   For 
example, P{tb * j) denotes the probability that a word contains » externally generated train 
bits.   Since P(w, t\tb = i) = P{w\tb = »'), we can write 
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P{w, t) = Pdvltb = k)P(tb = k) 

k-i 

+ l^j    P(w\tb = i)P{th = j). (15) 

If at least one of the n - fe bits preceding the corresponding input word is in error 
and « > fe, it is clear that tb = k. Thus 

(l - (1 - Pb)
nk,      n>k\ 

P(tb =k)= { b 

{0, n<k. (16) 

For tb = i, where 1 < j < fe, it is necessary that there be an error precisely n - i bits 
prior to the word bu no erroneous bits among the next n - i - 1 bits.  Therefore, for 
1 < / < fc, 

0, n<i. (17) 

Substitution of Eqs. (13) through (17) into Eq. (12) yields the decomposition 

Pcw = P(w\tb =k)   [l - (1 - Pb)n-k] "(" " k) 

min(k-l ,n-l) 

+/2      Piw\tb=i)Pb(l-Pb)n-i-l+[l.il.pb)k]il.pb)n-ly (18) 

where u(n - ft) is a step function, that is, u(n - k) is 0 for n < k and is 1 for n > /e. 
Note that in the summation term, j extends to the least of the two integers k - 1 and 
n - 1. 

To evaluate the decomposition, the exact configuration of the cryptographic system 
has to be specified.  However, a tight upper bound can be obtained by simply observing 
that P(w\tb = k) and Piw\tb = i) must be less than unity.  Therefore 

minik-i, rt-1) 

pew<[i-ii-pbr'
k]u(n • k) +2^   Pbd - W'1 

+ [l-(l -P6)*](!-Pj,)"-! (19) 

8 
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After seine algebraic simplification, Eq. (19) reduces to the compact expression 

Pcw < 1 - (1 - Pbr*k-i. (20) 

We shall now show that there is a simpler bound 

Pcw<{n + k .l)Pb. (21) 

Consider the function of Pb defined by 

y = (n+ fe - 1)P6 - 1 + (1-P,,)"^-!. (22) 

Clearly y is zero at Pb = 0.  Since n + k > 2, y has a nonnegative derivative for all Pb such 
that 0 <Pb <1.  Thus for all possible Pb, y > 0.  We conclude that 

(n+ fe - 1)/»;, > 1 - (1-Pj,)"-^"1. (23) 

Combining Eqs. (20) and (23) yields Eq. (21). 

Using fc = 1 in Eq. (21), we obtain the companion inequality 

Pcb<nPb. (24) 

A binomial expansion indicates that the bound of Eq. (21) is almost as tight as the bound 
of Eq. (20) if 

Pb«2(n + k-2)-1,    n + k>2. (25) 

ENSEMBLE-AVERAGE ERROR RATES FOR STREAM CIPHERS 

A second measure of error-rate performance is obtained by considering ensembles of 
stream ciphers characterized by a specific value of the parameter n.  In what follows, we 
indicate an ensemble average by a bar over the P.   Let the symbol X denote the ensemble- 
average probability that a bit which is part of a train of external origin is in the correct 
state.  Before deriving an expression for Pcw we shall first investigate what value X 
might have. 

For linear systems, X is one-half, independent of the input word and the other out- 
put bits.   This statement is also true if a bit is simultaneously part of two or more trains. 
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To see the truth of this assertion, consider the linear system of Fig. 2.  Suppose that 
after n correct input bits, an erroneous input bit is received.  The corresponding output 
bit is then in error, and a train is started.   Over the ensemble of deciphering systems of 
the form of Fig. 2, it is equally likely that S4 will be open or closed.   If S4 is closed and 
the noxt input bit is correct, it is seen that the next output bit is in error.   Similarly, if 
S4 is open and the next input bit is in error, the next output bit is in error.  Thus if the 
next input lit has an error probability Ph, the error probability of the next output bit 
is (1/2) (1 - /ft) + {l/2)Pb = 1/2.   Continuing this reasoning leads to the conclusion that 
X = 1/2. 

It is believed that X is one-half with respect to the ensemble of all possible stream 
ciphers, independent of the input word and the other output bits.   Referring to Fig. 3, 
notice that over the ensemble an enciphered input can be applied simultaneously to any 
number of the shift-register stages and combiner elements.   Also, any number of the 
shift-register outputs can feed the combiner.   Because of the nonlinear operation of the 
combiner, an error in one or more of the bits feeding it may or may not produce an er- 
roneous key bit.   Thus in the ensemble there are deciphering systems in which a single 
erroneous input bit causes several bad bits to be fed into the combiner during most of 
the key production, and the nonlinear operation causes the subsequent bit error rate to 
be greater than one-half.  Clearly, in the ensemble there are other systems about which 
the opposite is true. 

Although X is one-half for the complete ensemble of all possible stream ciphers, it is 
possible that for a subset of nonlinear stream ciphers, X is different than one-half with 
respect to the restricted ensemble.   However, the most important practical stream cipher 
subset is the subset of secure ciphers, that is, those systems for which cryptanalysis is 
very difficult.   Setting X equal to one-half for this subset is an excellent approximation. 

When fe = 1, P(w\tb=k) = 1 - X. Thus it follows from Eq. (18) that 

Pcb = (1 - ^)[l - (1 - Pfe)"1] + Pb(l - Pb)"-1. (26) 

In this equation we have kept the unspecified parameter X because its retention does not 
complicate the expression significantly.   However, for the reasons mentioned and to facil- 
itate the derivation, we shall always assume X = 1/2 in determining the ensemble-average 
word error rate. 

We denote the condition that one or more of the first !_bits of an input word is in 
error by the symbol a and the absence of the condition by a.   Using the theorem of 
total probability, we can write 

P {w\tb = i) = P{w,a\tb = i) + P{w,<x\tb = /). (27) 

If tb = i, the ensemble-average probability of no error in the first / output bits is (1/2)', 
independent of the input bits and the other output bits.   If a is false and tb = i, the last 
k - i output bits are not part of a train generated by the first / bits.  Consequently the 
first error in the last k - i input bits is added to a good key bit.  Therefore, the probability 

10 
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of no error in the last k - i output bits is equal to the probability of no error in the cor- 
responding input bits.   We conclude that 

P{w\tb*u a) = 1 - 2-'(l - P6)
fe-». (28) 

From the independence of bit errors, we have 

P{ä\tb = i) = (\ -Pby. (29) 

From the definition of a conditional probability and Eqs. (28) and (29), 

P{w,ä\tb = i) = ( 1 - V - 2-'( \-Pb)
k. (30) 

In almost all practical systems, we have n> k.   Thus, deferring consideration of the 
more complicated general case until later, we assume that n ^ k and determine 
P(w,a\tb = ») in a manner similar to the derivation of Eq. (30).   Clearly 

P(a\tb = 0 = 1 - ( 1 - Pby. (31) 

If a is true, n > k, and tb = i, then every output bit is part of a train. Consequently the 
ensemble-average probability of no error for each output bit is 1/2, independent of the 
other output bits.   It follows that 

P{w\tb = i, a) = 1 - 2-fe,    n> k. (32) 

From the definition of a conditional probability and using Eqs. (30), (31), and (32) in 
Eq. (27), there results 

P(w\tb =0=1- 2-'( 1 - P,,)* - 2-* [l - (1 - P6)'] ,    n>k. (33) 

From this relation or by direct reasoning it follows that for n > fe, 

P (w\tb = k) = l -2-k. (34) 

I 
Substitution of Eqs. (33) and (34) into Eq. (18) gives the ensemble-average word error 
rate.   After performing two easy summations and regrouping, we obtain 

PCW = i - 2-* +«-*/y i - pft)" -1 - (i. pbr**-1 

+ 2-fe ( 1 -Pb)
n -)     2->Pb ( 1 - Pb)

n*k~1-'. (35) 

i=l 
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Although we shall soon apply it in the present form, this equation can be made slightly 
more convenient for computation by performing the remaining summation to obtain, for 

Pew* < 

(1 -Ph)
n [(1 -Ph)

k - 2-*l 
l-2-*+/^2-fePft(l-P6)"-, 0—t ^ i    Pbtl/2;     (36) 

1 - ^b 

1-2-* ,    P. = 1/2. 

This formula is still tedious to use in manual computations.   Fortunately, a simple asymp- 
totic expression is highly accurate over the usual range of interest.  The approximation can 
be obtained by employing a Taylor-series expansion about the point Pft = 0 and dropping 
the higher order terms.   However, the condition for the validity of this procedure is too 
complicated for quick verification.   Consequently, we use an alternative method which 
yields a simple sufficient condition of validity.   Each of the factors in Eq. (35) of the 
form (1 - Pf,)"1 is approximated by 1 - rnPb; a sufficient condition for this approximation 
is Pb « 2(m - I)"1 if m > 1.  Each factor of the form Pb{l - Pb)

m is approximated by 
Pb\ a sufficient condition for this approximation is Pb « m'1 it m > 0.  With these ap- 
proximations and some algebraic simplification, Eq. (35) reduces to 

Pcw *\n + k-2-2-k {n-k - 2)1 Pb,    n^k. (37) 

Combining all the conditions which arise, it is found that the single condition 

P6 « (n + fe - 2)-1,    n + fe > 2, (38) 

suffices; that is, Eq. (38) is a sufficient condition for the validity of Eq. (37).   Using the 
same method on Eq. (26), we obtain 

Pcft*[n( l-X) + A']Pft. (39) 

For later comparison, we note that the asymptotic form of Eq. (11) is 

pw * kp. (40) 

It is readily verified that Eq. (38) is also a sufficient condition for the validity of Eqs. 
(39) and (40). 

To include the possibility that n < fe, we must employ more intricate reasoning.   Let 
the symbol ß - / designate the condition that the last bit error among the first i input 
bits occurs at input bit /, where 1 < / < i.   If |3 = /, then a is true; thus we make the 
decomposition 

12 
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i 

P{w,a\tb = i) =y~,F(u;Ufe = /, /3 = /)P(/3 = l\tb = i). (41) 

Oeariy the probability of ß = I, given tb = j, is equal to the probability that input bit / 
is erroneous and input bits / + 1 through i are correct.   We conclude that 

P{ß*ntb*i)'Pb{l~PbY-lt    KKi. (42) 

When tb = /', the probability that the first i output bits are correct has an ensemble aver- 
age equal to 2~'.   The probability that the last k - i output bits are correct depends only 
on the condition /3 = /, which implies that a train of n + / - J - 1 bits extends into the 
final k - i bits.   Let wk _, denote in error in a word consisting of fe - j output bits.   From 
the previous discussion it follows that 

P{w\tb = i,ß = l) = l- 2"' [l - P{wk^\tb = n + / - J - 1)] . (43) 

Substituting Eqs. (42) and (43) into Eq. (41) gives 

i 

P(w, a\tb = i) = PbJ  (1 - Pby-1 [l - 2"' + 2-' F(wk^\tb = n + / - i - 1)1. ( 44) 

/=i 

Using Eqs. (44) and (30) in Eq. (27), we obtain 

P{w\tb = j) = l- 2-'(l -Pb)
k - 2"' [l - ( 1 - pby] 

i 

+ 2-% /(I - Pbr' Piw^iltb = n +/-(- 1).      (45) 
/»I 

This expression is valid for all n.   When n> k, P(wk _ , 1/6 = n + / - i - 1) = 1 - 2"^"'), 
independent of /.  Consequently Eq. (45) reduces to Eq. (33).   However, when n <k, 
P(wk_i\tb = n + / - j - 1 ) must be evaluated by the same procedure as that leading to Eq. 
(45) itself.   In general, we have a finite hiearchy of equations, with the number of equa- 
tions depending on fe - n.  The general ensemble-average cryptographic word-error-rate 
formula follows on substitution of Eqs. (34) and (45) into Eq. (18). 

To obtain an asymptotic expression for Pcw when n < fe^we note that the last term 
in Eq. (45) does not contribute to the final equation even if P(u>k _ ,1*6 ■ n + / - / - 1 ) 
= 1.  Then, applying the method described previously to Eqs. (45) and (18), we obtain 

13 
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Pcw *[n + k - 2 {1 - 2-n^Pbt    n<k, (46) 

where Eq. (38) provides a sufficient condition. 

ERRORRATE BOUNDS AND ENSEMBLE AVERAGES 
FOR BLOCK CIPHERS 

In the conventional block cipher, a plaintext block of m total bits, comprising an 
integral number of words of k bits each, is enciphered as a block of n total bits.   After 
transmission and reception, the plaintext block is restored as the output of the decipher- 
ing system.   Clearly no output words will be in error unless the received enciphered block 
contains an error in at least one of its n bits.  Thus we can write 

Pcw = P{w\be)[l - ( 1 - Pb)"] , (47) 

where P{w\be) is the probability of an error in an output word, given that there is a block 
error at the input of the deciphering system.  Setting P(w\be) = 1 and using Eq. (23), we 
see that Eq. (47) yields the upper bound given by 

Pew < nPh (48) 

If /? > 1, this upper bound is less than the correspond! ig upper bound for the stream 
cipher, given by Eq. (21).   Since the parameter k does not appear in Eq. (48), the right 
hand side provides an upper bound for Pcb also.   For Pcb the upper bound is the same as 
that indicated in Eq. (24) for the stream cipher. 

Usually block ciphers do not involve a size change, that is, n = m.   We proceed to 
obtain the ensemble-average cryptographic error rates for this case.  Due to the one-to- 
one correspondence between the enciphered and plaintext blocks, an error in a received 
enciphered block is certain to cause at least one erroneous bit in \hr output block.  Con- 
sequently, over the ensemble of block ciphers there are 2" - 1 equally likely output 
blocks corresponding to an erroneous enciphered block.   Consider any fixed bit in these 
output blocks.   In 2''"1 - 1 of the possible output blocks, this bit will be correct, that 
is, in the same state it would have been if no error had occurred in the enciphered block. 
We conclude that given a block error, there is an ensemble average probability that a bit 
is correct equal to (2',_1 - l)!^" - 1).  Consider a second fixed output bit.  Given that 
there is a Llock error and that the first fixed output bit is correct, it follows from an ex- 
tension of the previous reasoning that there is an ensemble-average probability that the 
second fixed bit is correct equal to (2""2 - 1)1(2'»"1 - 1).   Ux^,X2, ... xn are events, 
the probability of all these events can be described as follows: 

/•(*!. *2 *n) ' P(*nK-\ ^l) ... Pix^nxi). (49) 

Using Eq. (49) and repeating our analysis for successive output bits, we conclude that 
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k    2""' - 1 
P{w\be)=l-    n 

,-1   2n+1-' - 1 

2n{ 1 -2-k) 
= . (50) 

2" - 1 

Combining this relation with Eq. (47), we obtain the ensemble-average cryptographic word 
error rate for block ciphers 

Pcw = (l- 2-")-l ( 1 - 2-*) [l - ( 1 - Pbr] ■ (51) 

The ensemble-average cryptographic bit error rate for block ciphers is 

Fcb   =1/2(1- 2-'')-1 [l - ( 1 - Pb)
n] . (52) 

Under the condition that 

P6«2(fi-1)-1, (53) 

we obtain the asymptotic formulas 

Pcb Ml-2-")-i|P6 (54) 

and 

^ *(l-2-n)-1(l-2-*)nPft. (55) 

Although these formulas hold for all values of n and k, it should be remembered that 
n > 4fc is usually required to safeguard against the frequency analysis of block patterns. 
We shall compare the error rates of block and stream ciphers in the next section. 

DEGRADATION DUE TO CRYPTOGRAPHY 

The bit error rate for ordinary transmission is a function of the modulation system. 
For most modulation systems, when white Gaussian noise is present, the bit error rate 
has the functional form specified by 

"&' 
'Wfxrl. (56) 

where / is a function, NQ is the noise power spectral density, and Eb is the mean energy 
for a bit in the one state.   If this equation is substituted into Eqs. (26) and (36), or Eqs. 
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(51) and (52), there result formulas in terms of Eh.   By comparing these formulas with 
Eqs. (11) and (56), we can determine the increase in Eb required to obtain the same er- 
ror rate from a cryptographic system as the corresponding plaintext system.  This increase 
provides a quantitative measure of cryptographic degradation.   Let P^w denote either Pcw 

or the upper bound of Pcw.   Then the degradation in decibels is defined to be 

E' F F' 
D = 101og10 101og,0 —   = 10 1og10 — , (57) 

^0 ^0 Eh 

where E'b is the energy required to produce a value of P'cw which is equal to the value of 
Pw when the energy is Eb. 

As an example, suppose we wish to calculate the degradation of the ensemble-average 
bit error rate of a block cipher relative to the plaintext bit error rate.   Suppose Eq. (56) 
is plotted empirically.   Then we can also plot Eq. (52).   For each value of P^, we can read 
a value of £b/W0 from the first plot and a value of E'^INQ corresponding to Pcb - Pb from 
the second plot.   Substitution into Eq. (57) yields D. 

Rather than employ the graphical method, it is often convenient to have a simple 
approximate formula for degradation.   To derive such a formula, note that with the help 
of Eq. (40) all our asymptotic error rate bounds and ensemble averages can be written in 
the form 

P'cw=g(n,k)Pw, (58) 

where g(n, k) is the corresponding function of the parameters n and k.   According to the 
definition of E'b, it is implicitly related to Eb by 

Combining Eqs. (40), (56), (58), and (59), it follows that the degradation can be deter- 
mined analytically by solving 

For conventional, ideal, coherent modulation systems, we can write 

2cE\-W        I cEb 

exp ). (61) 
^ 2/Vn' 
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where c is a constant depending on the modulation type.   This relation depends on the 
asymptotic approximation 

±-   f 
\f*n Jx 

x* 
erfc (x) = ——r   /      exp I- ~] dx * exp | - 

^ Jx \    2/ ^T^ \      2 
(62) 

which can be employed with negligible error when CE^JNQ > 10.   For conventional, ideal, 
noncoherent modulation systems, we can write 

fc  I      ! /    cE^ 
N« = -=- exp    - 2Nn 

(63) 

where no approximation is necessary.   For coherent phase-shift-keyed (PSK), coherent 
quadriphase-shift-keyed (QPSK), and noncoherent (differential) PSK modulation, we have 
c = 2.   For coherent and noncoherent amplitude-shift-keyed (ASK) modulation, we have 
c = 1/2. 

Substituting Eq. (61) into both sides of Eq. (60), taking the natural logarithm, and 
rearranging, we obtain 

cEb     E'b        \     i E'b lngin'k) '   WQ[Tb   -
1) =1   ln Tb 

(64) 

We now approximate the right-hand side by the first term in a Taylor-series expansion; 
that is, we use 

in I-[-(!-{ . #.i (65) 

which is reasonably accurate if 

El 
JP- < 1.5. (66) 

Substituting Eq. (65) into Eq. (64), solving for E'bIEb, and employing the result in Eq. (57), 
we obtain 

Dc  =   10 1og10 
I +    2 In g(n,k) 

cEfi 
+ 1 

(67) 
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where the subscript C is a reminder that this formula holds for coherent modulation sys- 
tems.   Using our solution of Eq. (64) in Eq. (66), the condition for thj accuracy of Eq. 
(67) becomes 

E. 

N, 
b 4 In g{n, k) - 1 

(68) 

For noncoherent modulation systems, we obtain in a similar manner 

DN = 10 logjo 1 + 
2 In g(n, k) 

cEb 
(69) 

Equation (69) is exact, since neither Eq. (62) nor Eq. (68) is required to derive it.  The 
expressions for Dc and DN and Eqs. (61) and (63) indicate that, for a fixed plaintext 
word-error-rate, the degradation is a function of coherency rather than specific modula- 
tion type.  In other words, the three basic types of coherent systems have the same deg- 
radation, and the two basic types of noncoherent systems have the same degradation. 

The degradation equations facilitate comparison between block ana stream ciphers. 
An important observation is that for most practical values of n and Pb, the ensemble- 
average bit-error-rate of block ciphers is nearly the same as that of stream ciphers with 
X = 1/2. 

To illustrate some other aspects of block and stream ciphers, an example of nonco- 
herent system degradation shall be studied.  Combining Eqs. (40), (63), and (69), we have 

JN = 10 Iog10 1 - 
In g{n, k) 

In 
2P.. 

(70) 

Figures 4 and 5 are plots of this equation with respect to bit and word ensemble-average 
error rates when n = 50.   In Fig. 4 we set fe = 1 and Pw = Pf,, and plot DN as a function 
of Pb.  The function g{g, k) is determined by Eq. (54) for block ciphers and by Eq. (39) 
for stream ciphers.  In Fig. 5 we set fc = 10 and plot DN as a function of Pw.  The func- 
tion g{n, k) is determined by Eqs. (40) and (55) fc- block ciphers and Eqs. (37) and (40) 
for stream ciphers.   It is seen that stream ciphers wuh X = 3/4 cause somewhat k-ss bit- 
error-rate degradation than the block ciphers.   However, the word-error-rate degradation 
due to block ciphers is lower than that of stream ciphers with X = 1/2 over the range of 
interest.  In Figs. 6 and 7 we see the effects of increasing the parameter n when Pb or 
Pw is fixed.  Since n is a measure of the security of the cryptographic system, it appears 
that the price paid in degradation for increased security is not exorbitant.   An interesting 
observation is that the ensemble-average word-error-rate degradations of block and stream 
ciphers converge as n increases. 
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Fig. 1 - Degradation of bit error rate as a funct.on of /'^ for a non- 
coherent system with n = 50. Solid curve: block cipher or stream ci- 
pher, X = 1/2.   Dashed curve:    stream cipher, ,Y = 3/4. 
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Fig. 5 — Degradation of word error rate as a function of Pw for a non- 
coherent system with n = 50 and fe = 10. 
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Fig. 7 — Degradation of word error rate a«; a function 
of n for a noncoherent system with Pw = 10 and 
k = 10. 

A comparison between Eqs. (48) and (55) reveals that no member of a block-cipher 
ensemble suffers significantly more word-error-rate degradation than the ensemble average 
for n > 3, /? > 3, and most practical values of Ph.  However, one or more members of a 
block-cipher ensemble may endure considerably greater bit-error-rate degradation than the 
ensemble average.   For example, with coherent PSK modulation and n = 60, it follows 
from Eq. (67) that some member of the associated block-cipher ensemble may have an 
extra bit-error-rate degradation ranging from approximately 0.3 dB to 0.2 dB as Pb varies 
from 10~3 to 10~6.   Similar statements can be made for stream-cipher ensembles when 
A'= 1/2. 

Suppose a cryptographic system is provided with the additional power necessary to 
obtain the same word error rate as the corresponding plaintext system.   The question 
arises as to whether the perfomance of the cryptographic system is now as good as that 
of the plaintext system.  To answer this question, note that a word error in a plaintext 
system usually invoh-es one or two erroneous bits.  On the other hand, a cryptographic 
word error usually implies many erroneous bits.   Relative performance must be evaluated 
by determining the additional cost, if any, of multiple bit errors within an erroneous 
word. 
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